Protein tyrosine phosphatase SHP-1 sensitizes EGFR/HER-2 positive breast cancer cells to trastuzumab through modulating phosphorylation of EGFR and HER-2
نویسندگان
چکیده
BACKGROUND Trastuzumab resistance in HER-2 positive breast cancer cells is closely related to overexpression of both epidermal growth factor receptor (EGFR) and human epidermal receptor (HER-2). SHP-1 has been demonstrated to downregulate tyrosine kinase activity including EGFR via its phosphatase function, but its effect on HER-2 activity is still unknown. Here, we examined the hypothesis that SHP-1 enhances the anticancer efficacy of trastuzumab in EGFR/HER-2 positive breast cancer cells through combining dual inhibition of EGFR and HER-2. METHODS Trastuzumab-resistant breast cancer SKBr-3 cells were generated by long-term in vitro culture of SKBr-3cells in the presence of trastuzumab. The SHP-1 was ectopically expressed by stable transfection. The activity and expression of EGFR, HER-2, and downstream signaling pathways were tested by Western blot. Cell viability was examined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and apoptosis was examined by flow cytometry. The binding between SHP-1 and EGFR/HER-2 was evaluated by immunoprecipitation assay and bimolecular fluorescence complementation. The effects of SHP-1 on tumorigenicity and trastuzumab sensitivity were confirmed via in vivo xenograft model. RESULTS Trastuzumab-resistant SKBr-3 cells showed aberrant co-expression of EGFR and HER-2. Introduction of wild-type SHP-1 inhibited cell proliferation, clone formation, and promoted the apoptosis induced by trastuzumab. Meanwhile, SHP-1 overexpression reduced phosphorylation levels of EGFR and HER-2 both in parental and trastuzumab-resistant SKBr-3 cells. In vivo study showed an increased antitumor effect of trastuzumab in SHP-1 overexpressed xenografts. At last, we discovered that SHP-1 can make complexes with both EGFR and HER-2, and both phospho-EGFR and phosphor-HER-2 levels in wild-type SHP-1 immunoprecipitates were less than those in phosphatase-inactive SHP-1 (C453S) immunoprecipitates, indicating that EGFR and HER-2 are potential substrates of SHP-1. CONCLUSION Taken together, we have demonstrated that the SHP-1 is a negative regulatory factor of the tyrosine kinase activity of HER-2 and EGFR through inhibiting phosphorylation. Dual targeting of EGFR and HER-2, by combining trastuzumab with SHP-1 overexpression, may improve response in HER-2 overexpressing breast cancer cells that also express high levels of EGFR.
منابع مشابه
ErbB-dependent signaling as a determinant of trastuzumab resistance.
The pathogenesis of breast cancer is profoundly influenced by the signaling cascades downstream of the human epidermal growth factor receptor (HER; also known as the ErbB receptor) family of receptor tyrosine kinases and by the HER ligands (1, 2). Abnormalities in the expression and activity of HERs and resulting signaling pathways in human breast tumors contribute to the invasion and progressi...
متن کاملAntitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase.
HER-2 belongs to the ErbB family of receptor tyrosine kinases, which has been implicated in a variety of cancers. Overexpression of HER-2 is seen in 25-30% of breast cancer patients and predicts a poor outcome in patients with primary disease. Trastuzumab (Herceptin), a monoclonal antibody to HER-2, is specifically approved for HER-2-positive breast cancer but is active only in a subset of thes...
متن کاملActivity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells.
Lapatinib (GW572016) is a selective inhibitor of both epidermal growth factor receptor (EGFR) and HER-2 tyrosine kinases. Here, we explore the therapeutic potential of lapatinib by testing its effect on tumor cell growth in a panel of 31 characterized human breast cancer cell lines, including trastuzumab-conditioned HER-2-positive cell lines. We further characterize its activity in combination ...
متن کاملSHP-2-dependent mitogen-activated protein kinase activation regulates EGFRvIII but not wild-type epidermal growth factor receptor phosphorylation and glioblastoma cell survival.
In human glioblastomas, the most common mutation of epidermal growth factor receptor (EGFR) is an in-frame deletion of an 801-bp sequence in the extracellular domain of EGFR termed EGFRvIII. The EGFRvIII does not bind ligand EGF but has constitutive tyrosine phosphorylation (pTyr) content and kinase activity that result in enhanced transformation, reduced apoptosis, and resistance to therapy. H...
متن کاملCommentary: can circulating HER-2 extracellular domain predict response to trastuzumab in HER-2-negative breast cancer?
Human epidermal growth factor receptor 2 (HER-2) is one of four members of the type I family of tyrosine kinase growth factor receptors. Other members of this family include the epidermal growth factor receptor (EGFR, HER1), HER-3, and HER-4. These proteins are localized to the cell membrane. Their structure includes an intracellular cytoplasmic domain that exhibits tyrosine kinase activity (ex...
متن کامل